
Eqs. (5) and (6), temperature-dependent; T, corrected temperature; bi, hi, coefficients of 
polynomials in (7); Cp, specific heat at constant temperature; c~i , vl, parameters of a point 
at a given isotherm for a selected pressure p~; B', H' and B", H , first and second temper- �9 
ature derivatives of coefficients B and H according to (7). 
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CALCULATING THE TIME OF ISOTHERMAL SATURATION OF A SPHERE 

V. I. Borisov, V. T. Borisov, 
V. V. Gal', K. A. Nikitin, 
and A. G. Reznikov 

UDC 533.73:536.42 

Results of a numerical solution of the inverse Stefan problem are presented for a 
sphere with boundary conditions of the third kind. Expressions are derived for 
calculating the time of total diffusion saturation of a spherical core, taking 
into account the rate of interaction of the gas phase with the surface of the solid. 

In many fields of technology it is important to know the time of isothermal diffusion 
saturation of solid particles whose material is used to form a target product. A character- 
istic case is provided by saturation of particles of spherical form and separation of the 
original material from the target product by a moving boundary of phase separation. Usually, 
the diffusing matter penetrates the solid from a gaseous or liquid phase. The depth of sat- 
uration is determined by the rate of mass transfer in the solid and in the surrounding medi- 
um. The diffusion coefficient in the liquid or gas is many orders greater than in the solid. 
Therefore, in the first approximation of the process description we can confine ourselves to 
the solution of the interior problem of mass transfer, i.e., to the analysis of the reaction 
diffusion within the solid. 

The problem concerned with diffusion saturation of a sphere for an arbitrary kinetic 
relationship of the motion of the phase separation boundary is solved in [i, 2]. However, 
the use of the methods of these investigations, to determine the depth of saturation of the 
sphere, i.e., the solution of the inverse problem, constitutes considerable difficulties. 
We have made an attempt to numerically solve the problem of isothermal saturation of a sphere- 
shaped particle as a result of a reaction diffusion within the solid phase, taking into ac- 
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Fig. i. Scheme of concentration distribution in the 
case of reaction diffusion in a sphere. 

Fig. 2. Dependence of ~*(~, ~) on z~t(~). 

count the surface chemical reaction, and to approximately describe this solution in a form that 
is convenient for practical use. 

In Fig. i we have shown a given distribution of the concentration of the diffusing mat- 
ter. In accordance with the course of saturation we assume that first the particle is sat- 
urated uniformly over the entire volume up to a certain limiting concentration CI which is 
determined by the diffusing material. After this, a layer of the target product is simul- 
taneously and uniformly formed on its surface and grows toward the center. The depth of sat- 
uration of the sphere is determined by the sum of the times of these stages of the process. 
The duration of the uniform saturation of the sphere up to the concentration CI can be de- 
termined by the methods [3, 5]. Therefore, the time count of saturation is taken from the 
instant when the growth of the layer of the target product starts. 

The problem being considered is a nonlinear problem of mathematical physics with a mov- 
ing phase separation boundary, and determination of the position of this boundary is neces- 

sary for its solution. 

The problem is formulated by the equation 

C t = D(C~. + 2r-'C~) ( l )  

with the conditions 

K IC* - -  C (R,  /)] = DC, (R, /); C lY (l), tl = C2; 

- - D C . ( y ,  t) = ( C , - - C  0 9"(0; 9(0)---- R, 
(2) 

where the first expression in (2) describes the emergence of the diffusing matter from the 
surrounding medium in the form of the boundary condition of the third kind, and the second 
describes the condition on the moving boundary. Here K -- the constant of heterogeneous chemi- 
cal reaction -- is regarded as independent of the concentration, which is valid in a fairly 
broad interval of variation of the parameters [7]. 

We introduce the dimensionless variables 

X ---- 1 - - r R - ' ;  T -- (C*-- C2)(C. 2 --CO-~DtR-~; Z ---- 1 --y(t) R-'; 

U ---- [C* -- C (r, t)](C, -- C~)-'; ~ ==-(C* -- C~.)(C 2 -- C,)-z; i.t = D (KR)  -~. 
(3) 

Then (I) and (2) are transformed into 

Uxx -- 2 (I -- X) -I Ux = eU~, 

U (O, "~) = I.tUx(O, "O; U (Z('O, "0----1; U x ( Z  ('O, ~c) = Z~; Z(0)=0. 
(4) 

(5) 
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It is expedient to consider the quasistationary case of the problem (4), (5). 
0 and Eq. (4) is integrated with the condition (5) in the form 

%=0 : 0 .5(1  - - Z  2) + 3 - ~ ( ~  - 1)(1 - - Z 3 ) .  

Here E = 

(6) 

The time of total diffusion saturation of a sphere is given by the expressions 

%-0 = 6-I(2~ + 1), (7) 

= ( C~--CI R ~ t;=o \~  -__~ ,) ~b-(ZDK-'R-' + 1). (8) 

From (8) it follows that inside the diffusion region, where the rate of the process is 
checked, the time of total saturation is proportional to R 2, while in the kinetic region of 
reaction it is proportional to R. 

In the general form the problem (4), (5) was solved numerically on a Minsk-32 computer. 
The method of finite elements in a grid in the plane with the variables X and T was used. 
Along the X axis a constant step of i0 -~ was specified with respect to the variable T. A 
noniterative scheme was used to solve the resulting difference equations. The accuracy 
check of the numerical solutions and the choice of the step length were effected by compar- 
ing the results of the calculation with the exact solution for the limiting values of the 
parameters ~ and ~. 

The results of the calculation of values of T for given positions of the moving bound- 
ary y(t)R -I C [i, 0] with a step of 0.i are presented in Table i. 

In Fig. 2 we have shown the calculated dependence of the time T = T (0, c, ~) of total 
isothermal saturation of a spherical particle, being the fundamental characteristic for ob- 
taining a pure target product, on the value T* given by (7) The lines from the family 

E=O, 
~*(z~=0) have a small curvature and a broad range of variation of the values ~ and ~. This 
signifies that the function T*(e, ~) weakly depends on the magnitude of the parameter E. 
Therefore, the approximation of numerical values z* can be sought in the form 

"c* ~ T:-o Z A'n e"/2" (9) 
IlZ~O 

The first approximation for (9), which ensures an error not greater than 20% for the 
entire set of calculation results i0-~i0 ~, 0~E~IO 2, equals 

�9 *~__6-1(2~ + 1)[I + 0,5eI/2(2~ + 1)-1/2]. (10) 

From this feature of the function z*(0, s, p) it follows that the function Z(z) can be 
sought as the solution of the equation obtained by means of [8]: 

o o  

E an z n+2 O - -  n 7~ Z2r ~n [(2n + 2)!] -I O'f [(1 - -  ) Z~ l 1 - -  (1 + ~t) [ ( 2 n  + 2)!1 - ~  0"(' [(1 - -  ~,j ~: j ----- 

n=O r ico  

(ll) 

in the form of the series Z(~) = ~Zmem for ~ > 0. 

NOTATION 

C(r, t), concentration of diffusing matter in the layer of target product; CI, C2, sol- 
ubility of diffusing matter in the material of a spherical particle and its minimum solubility 
in the target product, respectively (see Fig. i); C*, concentration of diffusing matter in 
the adsorptive layer determining its emergence from the medium surrounding the particles; D, 
coefficient of reaction diffusion; t, time of reaction diffusion (of isothermal saturation of 
the sphere); r, position vector with its origin at the center of the sphere; y(t), modulus 
of the position vector characterizing the position of the boundary between the target prod- 
uct at the time t; y(t), velocity of the moving boundary; T*, t*, dimensionless and dimen- 
sional time of total diffusion saturation, respectively. 
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METHODS AND PROSPECTS OF THE DIRECT EXPERIMENTAL VERIFICATION 

AND REFINEMENT OF THE "PACKET" MODEL OF EXTERNAL HEAT 

TRANSFER IN A FLUIDIZED BED 

O. M. Todes UDC 66.096.5 

Analysis of the Basis of the Model 

The packet model proposed by Mickley [I] has served as a basis for explaining a whole 
series of special characteristics of external heat transfer in fluidized beds and for the 
construction of engineering formulas facilitating the practical estimation and calculation 
of heat-transfer coefficients. After considering new experimental data as to the structure 
of the boundary zone [2, 3] and the sharp criticism of the packet model made by Syromyatnikov 
[4], a more detailed analysis of the fundamental principles of the model has now become a 
matter of great importance. 

A fluidized bed of solid particles agitated by a rising gas flow is usually very in- 
homogeneous, not only in the boundary zone, but also over the whole volume of the apparatus. 
The local porosity c fluctuates constantly from e = i to c = Smin~0.4. In order to describe 
a number of phenomena associated with heat and mass transfer and catalytic reactions, many 
research workers [5] prefer to consider these fluctuations schematically and (by way of sim- 
plification) to assume that at any specific instant the fluidized bed consists of regions 
existing in one of two limiting states: s = I, i.e., gas bubbles free from particles, and 

= emin, constituting the so-called dense or compact phase (packets). The basis for making 
such a far-reaching schematization when analyzing catalytic reactions in a fluidized bed is 
the vast quantitative (practically qualitative) difference in the properties of these limit- 
ing states. Inside the bubble the gas never encounters catalyst grains, and no reaction oc- 
curs. In the dense phase, however, the reaction rate reaches a maximum. To a first approxi- 
mation this so-called two-phase model of the fluidized bed gives a satisfactory explanation 
for the reduction in the yield of the reaction in a fluidized bed by comparison with a sta- 
tionary catalyst and also reveals the main factors capable of influencing the degree of yield. 
Later on, however, when attempting to refine the quantitative laws of the process [6], it was 
found necessary (to a certain extent) to allow for intermediate states as well, namely, par- 
ticles spilling down into the interior of the bubble, the "tail" of tile bubble, and the 
"cloud" of adjacent particles undergoing vigorous gas-exchange with the bubble itself. It 
may well be that a description of the processes based on a fuller account of all the contin- 
uously varying states existing between the bubble and the packet will lead to major advances [7]. 
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